3.115 \(\int x^2 \log (d (e+f \sqrt {x})^k) (a+b \log (c x^n)) \, dx\)

Optimal. Leaf size=403 \[ \frac {1}{3} x^3 \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {1}{9} b n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+\frac {2 b e^6 k n \text {Li}_2\left (\frac {\sqrt {x} f}{e}+1\right )}{3 f^6}+\frac {b e^6 k n \log \left (e+f \sqrt {x}\right )}{9 f^6}+\frac {2 b e^6 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{3 f^6}-\frac {7 b e^5 k n \sqrt {x}}{9 f^5}+\frac {2 b e^4 k n x}{9 f^4}-\frac {b e^3 k n x^{3/2}}{9 f^3}+\frac {5 b e^2 k n x^2}{72 f^2}-\frac {11 b e k n x^{5/2}}{225 f}+\frac {1}{27} b k n x^3 \]

[Out]

2/9*b*e^4*k*n*x/f^4-1/9*b*e^3*k*n*x^(3/2)/f^3+5/72*b*e^2*k*n*x^2/f^2-11/225*b*e*k*n*x^(5/2)/f+1/27*b*k*n*x^3-1
/6*e^4*k*x*(a+b*ln(c*x^n))/f^4+1/9*e^3*k*x^(3/2)*(a+b*ln(c*x^n))/f^3-1/12*e^2*k*x^2*(a+b*ln(c*x^n))/f^2+1/15*e
*k*x^(5/2)*(a+b*ln(c*x^n))/f-1/18*k*x^3*(a+b*ln(c*x^n))+1/9*b*e^6*k*n*ln(e+f*x^(1/2))/f^6-1/3*e^6*k*(a+b*ln(c*
x^n))*ln(e+f*x^(1/2))/f^6+2/3*b*e^6*k*n*ln(-f*x^(1/2)/e)*ln(e+f*x^(1/2))/f^6-1/9*b*n*x^3*ln(d*(e+f*x^(1/2))^k)
+1/3*x^3*(a+b*ln(c*x^n))*ln(d*(e+f*x^(1/2))^k)+2/3*b*e^6*k*n*polylog(2,1+f*x^(1/2)/e)/f^6-7/9*b*e^5*k*n*x^(1/2
)/f^5+1/3*e^5*k*(a+b*ln(c*x^n))*x^(1/2)/f^5

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 403, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2454, 2395, 43, 2376, 2394, 2315} \[ \frac {2 b e^6 k n \text {PolyLog}\left (2,\frac {f \sqrt {x}}{e}+1\right )}{3 f^6}+\frac {1}{3} x^3 \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {1}{9} b n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )-\frac {b e^3 k n x^{3/2}}{9 f^3}+\frac {5 b e^2 k n x^2}{72 f^2}-\frac {7 b e^5 k n \sqrt {x}}{9 f^5}+\frac {2 b e^4 k n x}{9 f^4}+\frac {b e^6 k n \log \left (e+f \sqrt {x}\right )}{9 f^6}+\frac {2 b e^6 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{3 f^6}-\frac {11 b e k n x^{5/2}}{225 f}+\frac {1}{27} b k n x^3 \]

Antiderivative was successfully verified.

[In]

Int[x^2*Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c*x^n]),x]

[Out]

(-7*b*e^5*k*n*Sqrt[x])/(9*f^5) + (2*b*e^4*k*n*x)/(9*f^4) - (b*e^3*k*n*x^(3/2))/(9*f^3) + (5*b*e^2*k*n*x^2)/(72
*f^2) - (11*b*e*k*n*x^(5/2))/(225*f) + (b*k*n*x^3)/27 + (b*e^6*k*n*Log[e + f*Sqrt[x]])/(9*f^6) - (b*n*x^3*Log[
d*(e + f*Sqrt[x])^k])/9 + (2*b*e^6*k*n*Log[e + f*Sqrt[x]]*Log[-((f*Sqrt[x])/e)])/(3*f^6) + (e^5*k*Sqrt[x]*(a +
 b*Log[c*x^n]))/(3*f^5) - (e^4*k*x*(a + b*Log[c*x^n]))/(6*f^4) + (e^3*k*x^(3/2)*(a + b*Log[c*x^n]))/(9*f^3) -
(e^2*k*x^2*(a + b*Log[c*x^n]))/(12*f^2) + (e*k*x^(5/2)*(a + b*Log[c*x^n]))/(15*f) - (k*x^3*(a + b*Log[c*x^n]))
/18 - (e^6*k*Log[e + f*Sqrt[x]]*(a + b*Log[c*x^n]))/(3*f^6) + (x^3*Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c*x^n])
)/3 + (2*b*e^6*k*n*PolyLog[2, 1 + (f*Sqrt[x])/e])/(3*f^6)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2376

Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((g_.)*(x_))^(q_.), x_Sym
bol] :> With[{u = IntHide[(g*x)^q*Log[d*(e + f*x^m)^r], x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[Dist
[1/x, u, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && (IntegerQ[(q + 1)/m] || (RationalQ[m] &
& RationalQ[q])) && NeQ[q, -1]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int x^2 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right ) \, dx &=\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \int \left (-\frac {e^4 k}{6 f^4}+\frac {e^5 k}{3 f^5 \sqrt {x}}+\frac {e^3 k \sqrt {x}}{9 f^3}-\frac {e^2 k x}{12 f^2}+\frac {e k x^{3/2}}{15 f}-\frac {k x^2}{18}-\frac {e^6 k \log \left (e+f \sqrt {x}\right )}{3 f^6 x}+\frac {1}{3} x^2 \log \left (d \left (e+f \sqrt {x}\right )^k\right )\right ) \, dx\\ &=-\frac {2 b e^5 k n \sqrt {x}}{3 f^5}+\frac {b e^4 k n x}{6 f^4}-\frac {2 b e^3 k n x^{3/2}}{27 f^3}+\frac {b e^2 k n x^2}{24 f^2}-\frac {2 b e k n x^{5/2}}{75 f}+\frac {1}{54} b k n x^3+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{3} (b n) \int x^2 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \, dx+\frac {\left (b e^6 k n\right ) \int \frac {\log \left (e+f \sqrt {x}\right )}{x} \, dx}{3 f^6}\\ &=-\frac {2 b e^5 k n \sqrt {x}}{3 f^5}+\frac {b e^4 k n x}{6 f^4}-\frac {2 b e^3 k n x^{3/2}}{27 f^3}+\frac {b e^2 k n x^2}{24 f^2}-\frac {2 b e k n x^{5/2}}{75 f}+\frac {1}{54} b k n x^3+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{3} (2 b n) \operatorname {Subst}\left (\int x^5 \log \left (d (e+f x)^k\right ) \, dx,x,\sqrt {x}\right )+\frac {\left (2 b e^6 k n\right ) \operatorname {Subst}\left (\int \frac {\log (e+f x)}{x} \, dx,x,\sqrt {x}\right )}{3 f^6}\\ &=-\frac {2 b e^5 k n \sqrt {x}}{3 f^5}+\frac {b e^4 k n x}{6 f^4}-\frac {2 b e^3 k n x^{3/2}}{27 f^3}+\frac {b e^2 k n x^2}{24 f^2}-\frac {2 b e k n x^{5/2}}{75 f}+\frac {1}{54} b k n x^3-\frac {1}{9} b n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+\frac {2 b e^6 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{3 f^6}+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {\left (2 b e^6 k n\right ) \operatorname {Subst}\left (\int \frac {\log \left (-\frac {f x}{e}\right )}{e+f x} \, dx,x,\sqrt {x}\right )}{3 f^5}+\frac {1}{9} (b f k n) \operatorname {Subst}\left (\int \frac {x^6}{e+f x} \, dx,x,\sqrt {x}\right )\\ &=-\frac {2 b e^5 k n \sqrt {x}}{3 f^5}+\frac {b e^4 k n x}{6 f^4}-\frac {2 b e^3 k n x^{3/2}}{27 f^3}+\frac {b e^2 k n x^2}{24 f^2}-\frac {2 b e k n x^{5/2}}{75 f}+\frac {1}{54} b k n x^3-\frac {1}{9} b n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+\frac {2 b e^6 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{3 f^6}+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )+\frac {2 b e^6 k n \text {Li}_2\left (1+\frac {f \sqrt {x}}{e}\right )}{3 f^6}+\frac {1}{9} (b f k n) \operatorname {Subst}\left (\int \left (-\frac {e^5}{f^6}+\frac {e^4 x}{f^5}-\frac {e^3 x^2}{f^4}+\frac {e^2 x^3}{f^3}-\frac {e x^4}{f^2}+\frac {x^5}{f}+\frac {e^6}{f^6 (e+f x)}\right ) \, dx,x,\sqrt {x}\right )\\ &=-\frac {7 b e^5 k n \sqrt {x}}{9 f^5}+\frac {2 b e^4 k n x}{9 f^4}-\frac {b e^3 k n x^{3/2}}{9 f^3}+\frac {5 b e^2 k n x^2}{72 f^2}-\frac {11 b e k n x^{5/2}}{225 f}+\frac {1}{27} b k n x^3+\frac {b e^6 k n \log \left (e+f \sqrt {x}\right )}{9 f^6}-\frac {1}{9} b n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+\frac {2 b e^6 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{3 f^6}+\frac {e^5 k \sqrt {x} \left (a+b \log \left (c x^n\right )\right )}{3 f^5}-\frac {e^4 k x \left (a+b \log \left (c x^n\right )\right )}{6 f^4}+\frac {e^3 k x^{3/2} \left (a+b \log \left (c x^n\right )\right )}{9 f^3}-\frac {e^2 k x^2 \left (a+b \log \left (c x^n\right )\right )}{12 f^2}+\frac {e k x^{5/2} \left (a+b \log \left (c x^n\right )\right )}{15 f}-\frac {1}{18} k x^3 \left (a+b \log \left (c x^n\right )\right )-\frac {e^6 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{3 f^6}+\frac {1}{3} x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )+\frac {2 b e^6 k n \text {Li}_2\left (1+\frac {f \sqrt {x}}{e}\right )}{3 f^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 434, normalized size = 1.08 \[ -\frac {600 e^6 k \log \left (e+f \sqrt {x}\right ) \left (3 a+3 b \log \left (c x^n\right )-3 b n \log (x)-b n\right )-1800 a f^6 x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )-1800 a e^5 f k \sqrt {x}+900 a e^4 f^2 k x-600 a e^3 f^3 k x^{3/2}+450 a e^2 f^4 k x^2-360 a e f^5 k x^{5/2}+300 a f^6 k x^3-1800 b f^6 x^3 \log \left (c x^n\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )-1800 b e^5 f k \sqrt {x} \log \left (c x^n\right )+900 b e^4 f^2 k x \log \left (c x^n\right )-600 b e^3 f^3 k x^{3/2} \log \left (c x^n\right )+450 b e^2 f^4 k x^2 \log \left (c x^n\right )-360 b e f^5 k x^{5/2} \log \left (c x^n\right )+300 b f^6 k x^3 \log \left (c x^n\right )+600 b f^6 n x^3 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+3600 b e^6 k n \text {Li}_2\left (-\frac {f \sqrt {x}}{e}\right )+1800 b e^6 k n \log (x) \log \left (\frac {f \sqrt {x}}{e}+1\right )+4200 b e^5 f k n \sqrt {x}-1200 b e^4 f^2 k n x+600 b e^3 f^3 k n x^{3/2}-375 b e^2 f^4 k n x^2+264 b e f^5 k n x^{5/2}-200 b f^6 k n x^3}{5400 f^6} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c*x^n]),x]

[Out]

-1/5400*(-1800*a*e^5*f*k*Sqrt[x] + 4200*b*e^5*f*k*n*Sqrt[x] + 900*a*e^4*f^2*k*x - 1200*b*e^4*f^2*k*n*x - 600*a
*e^3*f^3*k*x^(3/2) + 600*b*e^3*f^3*k*n*x^(3/2) + 450*a*e^2*f^4*k*x^2 - 375*b*e^2*f^4*k*n*x^2 - 360*a*e*f^5*k*x
^(5/2) + 264*b*e*f^5*k*n*x^(5/2) + 300*a*f^6*k*x^3 - 200*b*f^6*k*n*x^3 - 1800*a*f^6*x^3*Log[d*(e + f*Sqrt[x])^
k] + 600*b*f^6*n*x^3*Log[d*(e + f*Sqrt[x])^k] + 1800*b*e^6*k*n*Log[1 + (f*Sqrt[x])/e]*Log[x] - 1800*b*e^5*f*k*
Sqrt[x]*Log[c*x^n] + 900*b*e^4*f^2*k*x*Log[c*x^n] - 600*b*e^3*f^3*k*x^(3/2)*Log[c*x^n] + 450*b*e^2*f^4*k*x^2*L
og[c*x^n] - 360*b*e*f^5*k*x^(5/2)*Log[c*x^n] + 300*b*f^6*k*x^3*Log[c*x^n] - 1800*b*f^6*x^3*Log[d*(e + f*Sqrt[x
])^k]*Log[c*x^n] + 600*e^6*k*Log[e + f*Sqrt[x]]*(3*a - b*n - 3*b*n*Log[x] + 3*b*Log[c*x^n]) + 3600*b*e^6*k*n*P
olyLog[2, -((f*Sqrt[x])/e)])/f^6

________________________________________________________________________________________

fricas [F]  time = 0.69, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b x^{2} \log \left (c x^{n}\right ) + a x^{2}\right )} \log \left ({\left (f \sqrt {x} + e\right )}^{k} d\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k),x, algorithm="fricas")

[Out]

integral((b*x^2*log(c*x^n) + a*x^2)*log((f*sqrt(x) + e)^k*d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \log \left (c x^{n}\right ) + a\right )} x^{2} \log \left ({\left (f \sqrt {x} + e\right )}^{k} d\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^2*log((f*sqrt(x) + e)^k*d), x)

________________________________________________________________________________________

maple [F]  time = 0.19, size = 0, normalized size = 0.00 \[ \int \left (b \ln \left (c \,x^{n}\right )+a \right ) x^{2} \ln \left (d \left (f \sqrt {x}+e \right )^{k}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*ln(c*x^n)+a)*ln(d*(e+f*x^(1/2))^k),x)

[Out]

int(x^2*(b*ln(c*x^n)+a)*ln(d*(e+f*x^(1/2))^k),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {147 \, b e x^{3} \log \relax (d) \log \left (x^{n}\right ) + 49 \, {\left (3 \, a e \log \relax (d) - {\left (e n \log \relax (d) - 3 \, e \log \relax (c) \log \relax (d)\right )} b\right )} x^{3} + 49 \, {\left (3 \, b e x^{3} \log \left (x^{n}\right ) - {\left ({\left (e n - 3 \, e \log \relax (c)\right )} b - 3 \, a e\right )} x^{3}\right )} k \log \left (f \sqrt {x} + e\right ) - \frac {21 \, b f k x^{4} \log \left (x^{n}\right ) + {\left (21 \, a f k - {\left (13 \, f k n - 21 \, f k \log \relax (c)\right )} b\right )} x^{4}}{\sqrt {x}}}{441 \, e} + \int \frac {3 \, b f^{2} k x^{3} \log \left (x^{n}\right ) + {\left (3 \, a f^{2} k - {\left (f^{2} k n - 3 \, f^{2} k \log \relax (c)\right )} b\right )} x^{3}}{18 \, {\left (e f \sqrt {x} + e^{2}\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k),x, algorithm="maxima")

[Out]

1/441*(147*b*e*x^3*log(d)*log(x^n) + 49*(3*a*e*log(d) - (e*n*log(d) - 3*e*log(c)*log(d))*b)*x^3 + 49*(3*b*e*x^
3*log(x^n) - ((e*n - 3*e*log(c))*b - 3*a*e)*x^3)*k*log(f*sqrt(x) + e) - (21*b*f*k*x^4*log(x^n) + (21*a*f*k - (
13*f*k*n - 21*f*k*log(c))*b)*x^4)/sqrt(x))/e + integrate(1/18*(3*b*f^2*k*x^3*log(x^n) + (3*a*f^2*k - (f^2*k*n
- 3*f^2*k*log(c))*b)*x^3)/(e*f*sqrt(x) + e^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x^2\,\ln \left (d\,{\left (e+f\,\sqrt {x}\right )}^k\right )\,\left (a+b\,\ln \left (c\,x^n\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*log(d*(e + f*x^(1/2))^k)*(a + b*log(c*x^n)),x)

[Out]

int(x^2*log(d*(e + f*x^(1/2))^k)*(a + b*log(c*x^n)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*ln(c*x**n))*ln(d*(e+f*x**(1/2))**k),x)

[Out]

Timed out

________________________________________________________________________________________